If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-28x^2+84x+1120=0
a = -28; b = 84; c = +1120;
Δ = b2-4ac
Δ = 842-4·(-28)·1120
Δ = 132496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{132496}=364$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-364}{2*-28}=\frac{-448}{-56} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+364}{2*-28}=\frac{280}{-56} =-5 $
| 3.4s=20.4 | | z5+9=−53 | | 6x^2+8x=9 | | 2x+1=5x÷3 | | 2x-4=4+6 | | z/5+9=−53 | | -.37m+1-1.625m=5 | | −2x+7+5x−4=2x-6 | | −2x+7+5x−4=2x−6 | | 20-10y=50 | | x+20+3x=1*0 | | (n-6)(4n-7)=0 | | 3(x-4)-6x=15 | | 4x+8=6x–4 | | X+13=3x-25 | | -5(y+5)=-9y-17 | | 2x-30+x=1*) | | 2.1z+20.6=-8.2z. | | .33(m+21+.66m=-2 | | 7d+3=59 | | 8d+5=21 | | 15-5y=4y | | 7y=2y+45 | | 3(8)=3478-3c | | 2×=3y+25 | | -13x=-2 | | 31=-5t-4 | | 3x2+3=10x | | 0.15x+30=0.40x+5 | | 51−44=50−x= | | 6x+10–4x=–4–11 | | 3w+7=13 |